Hybrid Approach to Face Recognition System using Principle component and Independent component with score based fusion process
نویسنده
چکیده
Hybrid approach has a special status among Face Recognition Systems as they combine different recognition approaches in an either serial or parallel to overcome the shortcomings of individual methods. This paper explores the area of Hybrid Face Recognition using score based strategy as a combiner/fusion process. In proposed approach, the recognition system operates in two modes: training and classification. Training mode involves normalization of the face images (training set), extracting appropriate features using Principle Component Analysis (PCA) and Independent Component Analysis (ICA). The extracted features are then trained in parallel using Back-propagation neural networks (BPNNs) to partition the feature space in to different face classes. In classification mode, the trained PCA BPNN and ICA BPNN are fed with new face image(s). The score based strategy which works as a combiner is applied to the results of both PCA BPNN and ICA BPNN to classify given new face image(s) according to face classes obtained during the training mode. The proposed approach has been tested on ORL and other face databases; the experimented results show that the proposed system has higher accuracy than face recognition systems using single feature extractor. KEYWORD: Face Recognition, Feature Extractor, Hybrid System, ICA, PCA, Neural Network, Score based strategy.
منابع مشابه
Technique to Hybridize Principle Component and Independent Component Algorithms using Score Based Fusion Process
1Department of Computer Science & Applications, Kurukshetra University, Kurukshetra 2Assistant professor, Department of Computer & Application, Kurukshetra University, Kurukshetra 3Assistant professor, Computer Science,GCW, Karnal -----------------------------------------------------------------------***-------------------------------------------------------------------Abstract – The performanc...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملImproving the quality of images synthesized by discrete cosines transform – regression based method using principle component analysis
Purpose: Different views of an individuals’ image may be required for proper face recognition. Recently, discrete cosines transform (DCT) based method has been used to synthesize virtual views of an image using only one frontal image. In this work the performance of two different algorithms was examined to produce virtual views of one frontal image. Materials and Methods: Two new meth...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace recognition using color local binary pattern from mutually independent color channels
In this article, a high performance face recognition system based on local binary pattern (LBP) using the probability distribution functions (PDFs) of pixels in different mutually independent color channels which are robust to frontal homogenous illumination and planer rotation is proposed. The illumination of faces is enhanced by using the stateof-the-art technique which is using discrete wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1401.0395 شماره
صفحات -
تاریخ انتشار 2014